
How to Perform a GeoIP Lookup with
Node.js

Posted on April 25, 2018

In this article, I'm going to walk you through the best possible way to find the physical location of

an IP address using Node.js (also known as IP geolocation).

Unfortunately, there is no standard way to figure out where an IP address is physically located.

Instead, companies referred to as GeoIP providers aggregate many different pieces of data

together to build an accurate database of IP location data.

GeoIP data is typically comprised of:

Domain WHOIS data (which itself must be aggregated by data providers)

Regional Internet Registries, which hand out large blocks of IP addresses to various Internet

Service Providers around the world (ISPs)

BGP feeds from large ISPs

Latency information (how long does it take for a packet from certain physical locations to

reach the destination IP

While getting all of the above information yourself is very complicated and expensive, there are

luckily a few great service providers who've already done this work and sell GeoIP data that you

can easily consume.

Today I'll show you how to use our newly released simple-geoip Node.js library to perform a GeoIP

database lookup and return the physical location of any IP address you might want to pinpoint.

1 Whois API LLC | www.whoisxmlapi.com

https://whoisapi.whoisxmlapi.com/
https://en.wikipedia.org/wiki/Regional_Internet_registry
https://en.wikipedia.org/wiki/Border_Gateway_Protocol
https://github.com/whois-api-llc/node-simple-geoip
https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

Create a GeoIPify Lookup Account

The first thing you'll need to do to use the simple-geoip library is go create a free GeoIPify account:

https://geoipify.whoisxmlapi.com/signup

GeoIPify is one of the largest and least expensive GeoIP providers. You can use the GeoIPify

service to perform 1,000 free GeoIP queries each month, or you can pay them a flat fee of $27 per

month for 100,000 queries. Need more queries? You can see all the available plans on the

GeoIPify pricing page.

Once you've created and logged into your GeoIPify account, you'll need to view your account's

products page and copy your API key — you will need this later to make GeoIP queries.

Install the simple-geoip Package

Now that your account is setup, the next thing you need to do is install the Node package. From

the command line, run the following command:

$ npm install simple-geoip

This will download and install the latest release of the simple-geoip package from NPM.

Perform a GeoIP Lookup Using simple-geoip

Now that you have both an account and the simple-geoip package installed, let’s take a look at

some code you can run to look up the physical address of any IP address you want.

Here’s a small script, `geoip.js`, which will find the physical location of a popular IP address

2 Whois API LLC | www.whoisxmlapi.com

https://geoipify.whoisxmlapi.com/signup
https://geoipify.whoisxmlapi.com/
https://geoipify.whoisxmlapi.com/pricing
https://geoipify.whoisxmlapi.com/products
https://publishing-platform-legacy.whoisxmlapi.com/wordpress/wp-content/uploads/2018/04/Screenshot-from-2018-04-17-19-55-40.png
https://www.npmjs.com/package/simple-geoip
https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

(`8.8.8.8`, one of Google's core DNS servers):

const GeoIP = require("simple-geoip");

let geoIP = new GeoIP("your-api-key");

geoIP.lookup("8.8.8.8", (err, data) => {

 if (err) throw err;

 console.log(data);

});

As you can see, there are really only three steps to using the library:

Import the library

Create a `GeoIP` object by giving it your API key that was created when you signed up for

the GeoIPify service

Run the `lookup` method, passing in the IP address you want to verify and a callback

function. This callback function is what will be run when the GeoIP lookup has completed.

The data that’s returned in the callback will look something like this:

{

 "ip":"8.8.8.8",

 "location": {

 "country":"US",

 "region":"California",

 "city":"Mountain View",

 "lat":37.40599,

 "lng":-122.078514,

 "postalCode":"94043",

 "timezone":"-08:00"

 }

}

3 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

This JSON data tells you everything you need to know about the physical location of the `8.8.8.8`

IP address.

Behind the scenes, the GeoIPify API service is handling all the GeoIP database lookups and data

aggregation — getting data from providers and processing millions of updates per day.

Customizing the GeoIP Lookup Behavior in simple-geoip

One of the nice things about the simple-geoip Node.js library is that it automatically retries failed

requests up to five times in a row.

For instance, let's say you are attempting to perform a GeoIP lookup request and your internet

connection dies half-way through. Instead of simply erroring out the simple-geoip lookup will retry

the request to give it another chance to go through.

In the event that you'd prefer the simple-geoip library *not* retry failed requests, you can pass in

some optional configuration data when creating the `GeoIP` lookup instance like so:

const GeoIP = require("simple-geoip");

let geoIP = new GeoIP("your-api-key", { retries: 2 });

geoIP.lookup("8.8.8.8", (err, data) => {

 if (err) throw err;

 console.log(data);

});

You can set the `retries` amount to any number between `0` and as much as you want. One thing

to keep in mind, however: the more retries you allow the slower a request might be in the event of

a failure.

4 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

While retries are handy when working around partial network outages, if you are having a serious

outage it might be better to just error out early on without wasting a lot of time retrying your failed

requests. The default retry behavior (five retries) is usually a good choice for most people.

Use Your New GeoIP Data

Now that you’ve seen how easy it is to find the physical location of IP addresses using the simple-

geoip library, you should start implementing GeoIP lookups into your product or service!

Some really common use cases for GeoIP data include:

Detecting a user's country when they visit your website and providing a customized

experience for them based on their location (language, ads, design, currency, etc.)

Block users from certain locations from accessing your website. For instance, if you're a

video streaming provider and only have the rights to stream video in a specific country,

GeoIP lookups can provide you with that data so you can only serve customers in regions

where you can legally operate.

Fraud and risk mitigation. If you notice a large amount of fraud coming from a specific

location, temporarily blocking visitors from that location can be a quick way to help mitigate

fraud and other issues.

By analyzing the IP addresses of visitors to your website you can greatly enhance any web

products and services.

Use simple-geoip

To wrap things up: performing GeoIP lookups doesn't have to be hard or expensive. By using our

new simple-geoip Node.js library and the GeoIPify service you can easily build and manage even

a large web product for very little money.

5 Whois API LLC | www.whoisxmlapi.com

https://github.com/whois-api-llc/node-simple-geoip
https://geoipify.whoisxmlapi.com/
https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

If you need to perform GeoIP lookups, please check out the simple-geoip library as it makes

looking up IP address location information incredibly simple.

If you have any questions, please leave a comment below or email me!

6 Whois API LLC | www.whoisxmlapi.com

https://github.com/whois-api-llc/node-simple-geoip
mailto:randall@whoisxmlapi.com
https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

