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Abstract — This research utilizes social network analysis to 

determine the success of three different disruption strategies on a 

child exploitation network extracted from the public internet. 

Using a custom-written web-crawler called LECEN, data from a 

set of hyperlinked child-exploitation websites was collected from 

the Internet. From these data, two types of networks were coded: 

the nodes of the first network consisted of only website domains, 

while the nodes of the second were generated using the registrant 

data, where the nodes represented the legal owners of those same 

domains. Three attack scenarios were carried out on these two 

networks: two types of hub attacks (one focused on in-degree and 

one focused on out-degree) and a bridge attack. Using these 

disruption strategies, it was found that bridge attacks were more 

suitable for disrupting the domain networks, while both hub-

attacks could be favored when disrupting the network of 

registrants. These findings have implications for law enforcement, 

as it provides real-world applications to disruption where 

registrants may be targeted directly. 

Keywords: Child exploitation, social network analysis, web-

crawler, internet 

I. INTRODUCTION 

Child sexual offenders have historically been quick to adapt 

technological advances, such as photography [9] and film [10] 

for the purposes of exploiting children. The movement of CEM 

to the internet has enabled child sexual offenders to form virtual 

communities online [11, 25, 26, 27], allowing them to more 

easily, and secretively, access and trade CEM, recruit co-

offenders and/or business partners, as well as validate their 

deviant behavior amongst other child sexual offenders [9, 10].  

Given the harm posed by the online spread of CEM, many 

organizations play a role in targeting the material online. These 

include law enforcement agencies, but also non-police 

regulatory bodies. Organizations such as INTERPOL continue 

to aid global police agencies by developing and maintaining the 

International Child Sexual Exploitation Image database [4], 

providing international law enforcement agencies access to 

known child exploitation images [6]. Private organizations, 

such as Microsoft© [13, 14], Google© [15], and NetClean [16] 

have developed technological solutions which assist law 

enforcement in identifying, analyzing, and storing CEM found 

online. Despite these efforts, current strategies to limit such 

content do not appear to have significantly reduced the problem. 

Law enforcement strategies intended to combat CEM online 

have included chat-room stings [7, 1], honey trap sites [2], 

injunctions issued against websites hosting CEM [1, 2], as well 

as traditional investigatory techniques adapted for online use [2, 

3]. These strategies tend to falter in effectiveness for a variety 

of reasons. Law enforcement efforts have primarily viewed 

CEM targets by individual websites, divorced from the larger 

network of websites they operate and survive within [1].  

These issues facing law enforcement and other organizations 

in targeting and combating online CEM points to a need for new 

strategies, and new ways of understanding the structure and 

nature of child exploitation online. Social network analysis 

(SNA) has been proven useful at delineating the structure of 

criminal organizations, such as terrorist groups [34], drug 

trafficking organizations [35], as well as child exploitation 

domains online [1, 5, 7]. From a law enforcement perspective, 

understanding the topography and disruption strategies of child 

exploitation networks holds significant value as it may detail 

how best to use limited resources to maximize the impact of 

attacks. For example, it has been suggested that when targeting 

online child exploitation networks, the strongest disruption 

attacks depended on the structure of the network, as well as the 

specific intention of law enforcement [1]. For example, hubs 

have been identified as useful for the control of specific 

information within terrorist networks [29], and using hub 

attacks has been shown to be useful in reducing density or 

clustering within child exploitation networks [1]. Similarly, 

research has posited bridge attacks as being particularly useful 

for small world networks such as the internet [30, 31]. 

What makes this research project unique, and helps improve 

upon previous studies focusing on child exploitation content 

online is the use of SNA for comparing attacks from the 

perspectives of both the web domains, and the registrants. 

Typically networks are created by linking nodes (i.e. website 

domains in this paper) to each other based on the number of 

links connecting them, and attack strategies have looked at 

removing those nodes based on various SNA measures. 

However, this assumes that attacking the websites themselves 

is the best strategy, and thus does not take into account the 

possibility that multiple websites could actually belong to a 

single actor (individual or group). A novel attack scenario is 

presented in this paper where, rather than attacking the website 



 

 

domains themselves, the actor(s) responsible for the nodes are 

also considered as potential targets (i.e. the registrants). This 

opens up the possibility that the removal of a single 

individual/group will remove multiple nodes simultaneously, 

which could significantly change the target prioritization for 

law enforcement. For example, using the network depicted in 

Figure 1, a general (non-SNA) attack focusing on only the 

number of images would attack node B as it has the most (20) 

images in the entire network. However, if the focus of the attack 

is to disrupt the network, then removing node B would have 

negligible effect as the network structure hardly changes. 

Instead, attacking node E would cause greater disruption as it 

would fragment the network into a small network (B, C, F) and 

4 isolates (A, D, G and H). Unfortunately, this would only 

remove 10 images from the network, and would allow the 

owner of the content to easily replace it on another website. By 

taking into account the actors, options which may otherwise 

appear as non-optimal become arguably strong alternatives. By 

attacking the actor who owns nodes A, D, G and F (none of 

which are important, from a “key player” perspective) and 

thereby removing 40 images, the network is fragmented into a 

small network (E, B, and C) and a single isolate (H). This may 

lead to more disruption, even if the equivalent number of nodes 

is removed from the domain network. It is this latter scenario 

that this paper explores on a real-world set of websites that 

contain CEM. The attack is also compared to an attack of 

similar scale, without knowledge of the registrant information. 

The three disruption strategies used to determine impact 

within the network are bridge attacks (nodes with the highest 

betweenness centrality scores) and two hub attacks, with one 

hub attack focusing on in-degree centrality and the other 

focusing on out-degree centrality. The change in specific 

network metrics (density, ties, average distance, distance based-

cohesion) allows selecting both the most appropriate disruption 

strategy, as well as determining through which strategy to attack 

the network; removing prominent domains (nodes) or removing 

the domains belonging to prominent registrants (actors).  

The structure of the paper is as follows. In section II, a 

description of the web-crawler used to extract the child 

exploitation network is given, while also describing our data 

collection method, construction of the network, as well as 

specific attack measures. In section III.A, the overall 

topography of the network is presented, as well as a break-down 

on the results of the three separate disruption attacks, these 

being a bridge attack and two hub attacks focusing on in-and 

out-degree centrality respectively. In section IV, an 

interpretation of the results is given, and an argument made for 

situational prioritization of domain owners within the online 

child exploitation network. Section V concludes, highlighting 

research limitations and future research propositions.  

II. METHODS 

Web-crawlers are the tools used by search-engines to navigate 

the Internet and collect information about each website and 

webpage. Search engines use them to collect data which allows 

users to perform queries to find information. They can also be 

used to seek out specific content, such as child exploitation 

material (CEM), as in the case of the study presented in this 

paper. Given a starting webpage, web-crawlers will recursively 

follow the links out of that webpage, until some user-specified 

termination conditions apply. For each web-page, the web-

crawler will keep track of all the links between other websites 

and follow them to retrieve those as well.  

To perform this research a software tool called the “Location 

Extraction of Child Exploitation Networks” (LECEN) was 

utilized. LECEN is a customized web-crawler designed at the 

International Cybercrime Research Centre at Simon Fraser 

University [18]. It builds upon the traditional capabilities of an 

existing customized web-crawler called CENE in order to 

investigate and analyze CEM networks online [5, 6]. LECEN 

has the unique ability to identify registrants, their physical 

address, and the domains which belong to them, allowing us to 

identify potential major players based on an individual’s 

location within the network. Therefore, this research seeks to 

measure the impact three different disruption attacks will have 

based on two different strategies for prioritizing removal of 

nodes within the network, while identifying commonalities and 

differences between both approaches.  

A. Data Collection 

LECEN starts by downloading a set of webpages which have 

been identified by the operator as containing CEM. In total, 

LECEN used 1, 269 starting webpages (or seeds) spread across 

132 different domains in order to identify other CEM material 

on the public internet. These webpages were identified through 

a previous crawl performed by LECEN as containing either 

confirmed CEM, or material which was identified as 

indeterminate based on the judgment of investigators within the 

Royal Canadian Mounted Police’s external hash database. For 

each webpage, the source HTML was retrieved, the content 

analyzed, and if certain requirements were not met the webpage 

was dropped from the queue and no further analysis was 

performed. If the requirements were met (namely, that a 

confirmed CEM hash value was located, the webpage was 

considered ‘on topic’, stored in the database, and the process 

repeated for all links within that webpage. 

Without scripted rules in place LECEN (as well as all web-

crawlers) would ceaselessly and blindly capture all web content. 

 
Figure 1 - Sample Network. Shapes denote website owners 

and numbers denote number of images on that website. 



 

 

To counter these limitations, LECEN has been designed with 

specific rules which ensure only relevant materials are captured 

during the crawling process. As LECEN collects and follows 

links outside of the starting seed sites, it simultaneously collects 

user requested statistics on each webpage, including relevant 

key-words, code-words, image hash values, and the presence of 

videos. To ensure accuracy when crawling, LECEN must 

identify a minimum of seven unique user-specified keywords or 

code words on each web-page in order to extract that webpage. 

The threshold of seven was previously identified as an indicator 

of the potential presence of CEM in previous research [7], but it 

does not exclude false positives. Because seeds had confirmed 

CEM, all domains examined in this study should be considered 

as directly or indirectly associated with a domain containing 

illegal material (as opposed to necessarily containing CEM 

themselves).  

For each image it encounters, LECEN queries an external 

MD5 hash database provided by the Royal Canadian Mounted 

Police in order to determine whether CEM is located on any 

crawled webpage. MD5 is a widely used and secure hash 

algorithm, which is used primarily for calculating digital 

signatures [28]. The images within the database are classified 

into three distinct categories. Category 1 is confirmed child 

pornography imagery under section 163.1(1) of the Canadian 

Criminal Code. Category 2 contains content displaying 

pornography or an individual engaged in explicit sexually 

activity, where the age of the individual was uncertain. 

Category 3 images consist of other video files and digital 

images found alongside CEM, but are not CEM themselves. 

Last updated June 1, 2012, the database contained 702,997 

Category 1, 2,109,813 Category 2 and 49,419,190 Category 3 

image hash-values. For the purposes of this study, any webpage 

that contained Category 1 or 2 images was automatically 

deemed to be of interest. 

Unlike normal web-crawlers, LECEN has been designed to 

incorporate Whois lookup functionality as it is crawling. Thus, 

LECEN’s Whois functionality retrieves the administrative, 

technical and registrant owner contact information for each 

domain it encounters, allowing LECEN to determine the 

physical location of each type of contact. The registrant of a 

domain is considered the domains’ legal owner. It should be 

noted that all registrant information collected and used was 

public and in accordance with ICANN WHOIS lookup terms of 

use [36]. 

B. Constructing the Network 

LECEN began crawling with 1,269 seed webpages collected 

from previous research at the ICCRC. With those seeds LECEN 

crawled the public internet from December 26, 2014 to January 

10th, 2015 while searching for the presence of category 1 or 2 

imagery. In total, LECEN retrieved 54, 156 web-pages and all 

images located within. From these downloaded webpages, 

LECEN identified a total of 4,937 different category 1 and 2 

images (1,569 category 1 images and 3,368 category 2 images). 

These images were spread across 1,166 different webpages on 

82 servers/domains. The resulting web-crawler data was used 

to construct two networks (Table 1). It should be stated that at 

no point does LECEN contravene or enter password protected 

websites.  

The first network, referred to as the “Domain Network”, was 

focused on the domains of the websites, where the nodes 

consisted only of website domains, while edges in the network 

represented the number of hyperlinks between the two 

corresponding domains. The second network, referred to as the 

“Registrant Network”, focused on the registrant data, where the 

nodes represented the legal owners of those same domains 

identified in the Domain Network, with the edges representing 

the number of hyperlinks between the sites that those registrants 

owned. Ties within the network were the summed links between 

domains. For example, using Figure 1, domains {A, D, F, G} 

are registered to Registrant1, and domain {C, H} are registered 

to Registrant2. Any links between {A, D, F, G} and {C, H} 

would be summed as the number of links between Registrant1 

and Registrant2. The registrant network was also used to 

evaluate which registrant owned the most important domain 

group in terms of (a) betweenness centrality, (b) in-degree 

centrality, and (c) out-degree centrality. The properties of each 

node include the number of images on that domain, and the 

owner (name and address) of the owner.  

The challenge in comparison arises from the discrepancy 

between using the LECEN data (i.e. registrants) which are 

aggregate data of the domain data and the domains themselves 

which are individual data. Further, simply creating a network of 

registrants loses valuable data on the network structure: the path 

between nodes has practical value in terms of traveling between 

domains as a user, an important point when discussing 

“disruption”. In order to mitigate valuable data loss on network 

structure, the network was viewed from the perspective of 

registrants. Thus, during the exploratory attack scenario nodes 

were removed from the domain network, while the registrant 

view of the network was used to prioritize the nodes which 

would be removed in the Registrant Prioritized Attack. 

C. Attack Measures 

This research focuses on identifying the most impactful 

disruption attacks which would most affect the extracted child 

exploitation network. To meet this objective, both bridge 

attacks (utilizing betweenness centrality) and hub attacks 

(utilizing degree centrality) were used to determine which 

nodes, having been removed, would most impact the structure 

and characteristics of the network. Both bridge and hub attacks 

were used on both the domain network, as well as the registrant 

network in order to determine from which perspective law 

enforcement would be most disruptive.  

Bridge attacks identify and target nodes with high 

betweenness centrality scores, where betweenness centrality 

indicates the degree to which node brokers access between 

otherwise unconnected others [19]. The betweenness centrality 

of the node u is defined as: 
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where )(, uwv represents the total number of shortest paths 

between each pair of nodes such as v and w that pass through 

node u and wv, denotes the total number of shortest paths from 

v to w [23].  

Alternatively, hub attacks identify and target nodes with high 

degree centrality scores, which have the largest number of 

incoming and outgoing links to other nodes in the network [1]. 

In other words, a domain or actor is viewed as a key player 

based on the total number of direct connections.   Therefore, 

this measure focuses on the most visible nodes in the network. 

A node with a high degree is in direct relationship or is neighbor 

to many other nodes. Nodes should be recognized by other 

nodes as main channels of information spreading, indeed, a 

crucial cog in the network occupying a central position [24]. In 

contrast, actors with low degrees are more peripheral in the 

network and these nodes are not as active in the connection 

process. Degree centrality of an actor u is calculated as follows:  
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where ud  is the number of first level neighbors of u, and N 

is the total number of actors in the network [24]. In-degree 

centrality for a node is defined as the fraction of nodes its 

incoming edges are connected to; in this study the fraction of 

domains that have links to a given domain. This is in contrast to 

the out-degree centrality, which is defined similarly but based 

on the nodes' outgoing edges; i.e. the fraction of domains that a 

given domain has links to, out of all the possible links. 

D. Attacking the Network 

Three different attacks for removing nodes within the network 

were employed on both the domain network and the registrant 

network: hub-attack (in-degree measure), hub-attack (out-

degree centrality measure), and bridge attack (betweenness 

centrality measure). It should be noted that for the purposes of 

this research, all disruption attacks were done in simulation, and 

at no time were any domains attacked or brought offline. 

Given this information, the research presented in this paper 

used multiple disruption strategies to provide a number of 

flexible possibilities. The attacks had two subsets. First, 

prioritizing the attack using a “Domain Prioritization Strategy” 

where the characteristics of the domains were analyzed to 

determine removal order in the Domain Network. Second, 

prioritizing the attack using a “Domain Prioritization Strategy” 

where the characteristics of the registrants (in the Registrant 

Network) were used to determine removal order in the Domain 

Network. The attack strategy followed this process. First, in 

order to evaluate the success of three different disruption 

strategies on the domain network, the desired attribute of the 

registrant network was used to prioritize targets in the domain 

network. As domain groups were removed based on the value 

of their registrant, an equal amount of nodes were removed from 

the domain network prioritized on the attribute of each 

individual.  After each removal, the corresponding analysis was 

re-run to prioritize the next target. The process was repeated 

until the next removal would exceed the top quartile of nodes - 

the top quartile encapsulated the most central (or important) 

nodes while still being parsimonious enough to measure the 

impact across multiple strategies In this instance the top-

quartile was selected in order to evaluate the impact the 

different strategies had on their respective key players. In 

application by law enforcement, where target selection is 

restricted by practical and legal considerations, the domain or 

user count would be even smaller. 

E. Outcome measures 

Density is one of the key measures used to determine network 

topography, both before and after removal of perceived key-

players.  Density is defined as the total number of ties present 

within a network divided by the total number of possible ties 

  
Figure 2 – Domain Network 

 

Figure 3 – Registrant Network 



 

 

within a network. In this case ties represent the links between 

the domains as explained in section II.C. By assessing the 

density both before and after any form of disruption, we can 

determine the change in relationships and ties between actors 

[32]. This measure assesses how connected each actor is and 

selected to indicate how easy it is to travel from one node to 

another in a cluster. 

In-degree centrality was chosen as a measure as it suggests 

that actors who receive many incoming ties are considered 

prominent within the network [20]. Similarly, out-degree 

centrality suggests that actors within the network with a large 

number of outgoing ties are capable of sharing information with 

others within the network, and are therefore considered 

influential within the network [20]. In both respects, a key-

player is identified by their high number of incoming, or 

outgoing ties within the network.  

Average distance refers to measuring the average length of all 

the shortest paths between all connected nodes within the 

network. Average distance makes for a useful measure as it can 

point to the speed with which resources (in this case information 

or CEM material) diffuses within the network [35]. This 

measure was selected to represent changes in total network 

accessibility over particular individuals or speed of access by 

actors in the network. 

Distance based cohesion is the aggregate measure of 

connectivity that includes the sum distances of the ties. It is 

utilized to illustrate that the disruption strategies have different 

impacts depending upon the end goal of the research. This 

allows for observation of how wide reaching the network is as 

opposed to the centrality measures which are much more 

focused. All outcome measures were considered in the three 

attack strategies when considering impact. 

III. RESULTS 

A. Topography 

Data collection for the purposes of this research took place on 

Dec 26, 2014 and ended on Jan 10, 2015. In total, LECEN 

retrieved 54,156 web-pages and all images located on them. 

There was a total of 4,937 different category 1 and 2 images 

(1,569 category 1 images and 3,368 category 2 images). These 

images were spread across 1,166 different webpages and 63 

servers/domains.  

Furthermore, the network’s overall topography was assessed.  

The extracted child exploitation network contained a total of 82 

nodes and 882 ties. The networks average distance was 1.957, 

and the overall density was 0.13. A summary is shown in Table 

1, with Figure 2 showing the domain network, and Figure 3 

showing the registrant network as visualized in UCINET [33]. 

B. Bridge Attacks 

Registrant Prioritized and Domain Prioritized attack strategies 

were first used to demonstrate the difference in network 

structure when interrupting the connections between domains 

using a node’s betweenness centrality score (Table 2). The stark 

contrast between the two measures indicates the superiority of 

the Domain Prioritization’s impact on segmenting networks 

using betweenness as an attack measure. This is demonstrated 

with three waves of attack which resulted in the removal of the 

top 25% (quartile) of the nodes. The result indicated the Domain 

Prioritization attack left a widely dispersed and lightly 

connected network with a higher average path length 

(indicating less efficiency in a user’s ability to travel from one 

domain to another).  

Through all three waves, the Registrant Prioritized attack 

strategy showed only minor reduction in distance-based 

cohesion and ties – in fact becoming denser as many periphery 

nodes were removed (Table 2). The average-distance of path 

length remained lower than that in the Domain Prioritized 

attack, indicating it is easier to travel from one domain to 

another on average, and so a longer average is desirable in terms 

of disruption. 

In the first wave, three nodes were removed premised upon 

the registrant's ownership of nodes with the highest 

Measure CEM network 

Nodes 82 

Ties 882 

Graph Centralization (IN) 2.12% 

Graph Centralization (OUT) 2.61% 

Average Distance 1.957 

Distance-based cohesion 0.235 
 

Table 1 - Network Topography 

   Measure 

 
Attack Strategy Attack Removed (total) Density Ties 

Distance-

cohesion  

Average 

distance  

Wave 1 Registrant Prioritized  1 registrant 0.123 780 0.209 1.894 

Domain Prioritized  3 nodes 0.114 720 0.2 2.135 

Difference --- 7.59% 8.00% 4.40% 11.96% 

Wave 2 Registrant Prioritized  2 registrants 0.149 639 0.207 1.479 

Domain Prioritized  17 nodes 0.082 352 0.116 1.615 

Difference 
--- 58.01% 57.92% 56.35% 8.79% 

Wave 3 Registrant Prioritized  3 registrants 0.159 602 0.217 1.443 

Domain Prioritized  21 nodes 0.06 249 0.09 1.899 

Difference --- 90.41% 82.96% 82.74% 27.29% 
 

Table 2 – Bridge Attack 

 



 

 

betweenness centrality score in the registrant prioritized 

network. Although the number of ties was reduced (882 to 720), 

distance-based cohesion remained relatively similar after this 

attack (0.235 to 0.2). However, average distance was reduced 

by 3.2% in the registrant prioritized network (1.957 to 1.894), 

indicating that this method of attack was primarily targeting and 

removing the more peripheral players while simultaneously 

confining the central group. Conversely, a 9.1% higher average 

path length (1.957 to 2.135) was observed following the attack, 

indicating a less efficient network overall. 

In the final wave a total of 21 nodes had been  removed from 

the network, with the overall density of the network when 

prioritizing domains (0.06) being much lower than that of the 

registrant prioritized attack strategy (0.159), with substantially 

lower ties (249 compared to 602) and distance-based cohesion 

(0.09 compared to 0.217).  

C. In-Degree Hub Attacks 

As previously discussed, in-degree hub attacks demonstrate 

the impact of removing the central hubs of attention (those 

domains that a lot of other webpages link to). By comparing the 

disruption of this attack between the two strategies, we were 

able to evince the trade-off in merely focusing on the in-degree 

criteria. At the cost of a more in-degree centralized network, 

other network measures are reduced using the Registrant 

Prioritization. In keeping with the premise established in the 

bridge attack, the hub-attack (based on in-degree centrality) 

removed nodes in three sequential waves (Table 3). 

Barring the disparity between the attack strategies in terms of 

out-degree centrality - wave 1 and 2 had similar reductions 

across all measures. This was due to a large overlap in the nodes 

which were removed. During wave 3 (with an additional 7 

nodes removed) a more dramatic departure was noted from the 

two attack strategies. Domain prioritization showed a large 

disparity between in- (7.909) and out-degree (1.338) centrality, 

leaving a highly centralized dense cluster, but with the main 

nodes which were sending users to other hubs having been 

reduced to more marginal numbers (0.063). 

While the Domain Prioritized strategy had greater reductions 

in in-degree centralization, the Registrant strategy had greater 

reductions in all other outcome measures. This result was due 

to the inclusion of nodes that would have failed to be included 

when focusing on the Domains only. The average path length 

was higher in the Registrant Prioritization, indicating a less 

efficient network (2.565 to 2.017).  

D. Out-Degree Hub Attacks 

The out-degree hub attack focus on those nodes that link to a 

lot of other nodes. This attack demonstrated close parallels in 

outcome measure reductions in all cases except degree 

centrality. This result demonstrates (across multiple waves) that 

only a small amount of efficiency of the attack is lost by 

emphasizing the registrant importance over the domain’s 

importance – and, as Table 4 indicates, out-degree centrality is 

reduced further by the Registrant Prioritization attack. In 

keeping with the hub based attacks, this disruption strategy 

focused on out-degree centrality, resulting in four waves (Table 

4). In wave 1, when comparing network measures between the 

Domain Prioritization and Registrant Prioritization, there was a 

small percentage difference in all categories (from 0.48% to 

3.29%), which favored the domain prioritization. The same 

similarities between strategies were observed in waves 2 and 3, 

including a large increase in wave 2.  

The Registrant Prioritization demonstrated less centralization 

than the Domain Prioritized attack until wave 4, where the 

disparity narrowed in out-degree (3.09 and 4.296) and it 

increased in in-degree centralization to 7.226. Wave 4 provided 

the most interesting result when considering all attack strategies 

and all changes accrued within each wave. It was noted that 

with wave 4, aside from the variance in the in-degree 

centralization, the cost of using the Registrant Prioritization was 

by far the lowest. Except for in-degree, every measure provided 

a level of disruption and was clearly comparable with the 

domain prioritization strategies. Similar to the out-degree based 

attacks, the cost of using the Registrant Prioritized strategy is 

the reduction in centrality in the network, but with a nearly 

equal or superlative reduction in accessibility and navigability 

of the network with all other measures only having a difference 

between 1.5% and 4.6% (Table 4). 

   Measure 

 
Attack Strategy 

Attack Removed 

(total) 

In 

Centrality 
Out 

Centrality 
Density Ties 

Distance-

cohesion  

Average 

distance  

Wave 1 Registrant Prioritized  1 registrant 3.848 2.337 0.104 624 0.204 2.111 

Domain Prioritized  5 nodes 3.307 3.307 0.1132 680 0.21 2.041 

Difference --- 15.12% 34.37% 8.47% 8.59% 2.90% 3.37% 

Wave 2 Registrant Prioritized  2 registrants 3.03 2.48 0.08 407 0.164 2.473 

Domain Prioritized  11 nodes 3.03 2.48 0.095 486 0.197 2.187 

Difference --- - - 17.14% 17.69% 18.28% 12.27% 

Wave 3 Registrant Prioritized  3 registrants 7.909 1.338 0.063 261 0.133 2.562 

Domain Prioritized  18 nodes 2.844 2.822 0.097 418 0.188 2.017 

Difference --- 94.21% 71.35% 42.50% 46.24% 34.27% 23.80% 
 

Table 3 – In-Degree Hub Attack 

 



 

 

IV. DISCUSSION 

The first objective of this research was to test the impact three 

different disruption strategies would have on an extracted child 

exploitation-related network. The strategies chosen to disrupt 

the network were a bridge attack, a hub-attack focusing on out-

degree centrality, and a hub- attack focusing on in-degree 

centrality. The element which makes the study unique, is that it 

compares the effects of these attacks on two different types of 

network: the website domain, and the registrants of these 

domains. Network studies typically consider a single type of 

node, and research on the networks of child exploitation 

websites had identified the consideration of registrants as a 

potentially important development for the field [5, 6]. 

Considering registrants is important because 1) the same 

individuals may be responsible for multiple websites, which is 

important information when contemplating disruption; and 2) it 

allows law enforcement to consider punitive measures on real 

individuals facilitating the existence of child exploitation on the 

public internet as opposed to a potentially more diffuse impact 

on internet domains. 

The results suggested that some disruption strategies favored 

attacking the domain on its own merits, while others were more 

successful focusing on the registrant. Bridge attacks were most 

impactful when applied to the domain network, as opposed to 

the registrant network.  Bridge attacks prioritizes nodes which 

broker access to other clusters within the network. Targeting 

these websites may lead to a decrease in bridges within the 

network, which reduces an individual’s ability to navigate to 

other child exploitation sites. Hub attacks, on the other hand, 

were most impactful on the registrant network. This was found 

for both in-degree, and out-degree attacks.  
It is possible that given the choice between theoretically 

disrupting the online network by targeting prominent domains, 

or targeting prominent owners of these domains in an off-line 

setting, law enforcement may favor penalizing individuals 

directly if the results of the disruption are comparable to those 

targeting the domains. The notion that arresting one individual 

could disrupt the network substantially by taking out multiple 

prominent domains within the network affords law enforcement 

flexibility in using limited resources to combat child 

exploitation online. 

Future research should adopt longitudinal research designs, in 

order to explore the life-span of child exploitation domains. 

This article takes a snap-shot over a short period of time, and 

little is known regarding the long-term functionality of these 

illicit domains. It is difficult to determine the efficacy of attack 

strategies over time, as well as the changes in the network due 

to such attacks outside of the simulations performed for the 

purpose of this study.  

The current design of LECEN permits navigating only the 

public internet for the purposes of finding target information. 

Although CEM continues to persist on the public internet, 

adjusting LECEN’s parameters in order to allow it to explore 

the Tor network may provide larger sample sizes and unveil the 

presence of previously unidentified CEM.  

There are a number of other limitations to this research that 

should be considered in interpreting these results. First, as 

mentioned before, although all websites are at least indirectly 

associated to child exploitation material via hyperlinks, there is 

the possibility that some websites captured by LECEN do not 

contain child exploitation content. However, this potential 

hurdle was limited as only domains which contained a category 

1 or category 2 hash value were included in the network for the 

purposes of analysis. It should be noted that LECEN does not 

capture webpage protected by entry passwords. Although this 

may limit the amount of material and webpages captured for 

analysis, it reflects material which is publically accessible 

without contravening website and forum password protection.   

Additionally a significant number of individuals (over 50%) 

utilized a paid service to hide the registrant data associated with 

their domain. These registrants were still included for the 

purposes of analysis, but it must be considered that many 

   Measure 

 
Attack Strategy 

Attack Removed 

(total) 

In 

Centrality 
Out 

Centrality 
Density Ties 

Distance-

cohesion  

Average 

distance  

Wave 1 Registrant Prioritized  1 registrant 2.181 2.395 0.11 658 0.211 2.054 

Domain Prioritized  5 nodes 3.307 3.307 0.1132 680 0.21 2.041 

Difference --- 41.03% 31.99% 2.87% 3.29% 0.48% 0.63% 

Wave 2 Registrant Prioritized  2 registrants 3.536 4.949 0.111 647 0.213 2.052 

Domain Prioritized  6 nodes 6.28 4.19 0.111 651 0.209 2.055 

Difference --- 55.91% 16.61% - 0.62% 1.90% 0.15% 

Wave 3 Registrant Prioritized  3 registrants 1.973 2.154 0.089 440 0.173 2.088 

Domain Prioritized  12 nodes 4.49 4.13 0.102 506 0.189 2.095 

Difference --- 77.89% 62.89% 13.61% 13.95% 8.84% 0.33% 

Wave 4 Registrant Prioritized  4 registrants 7.226 3.091 0.089 381 0.162 2.103 

Domain Prioritized  17 nodes 4.737 4.296 0.085 366 0.168 2.135 

Difference --- 41.61% 32.62% 4.60% 4.02% 3.64% 1.51% 
 

Table 4 – Out-Degree Hub Attack 

 



 

 

domain hosts obfuscate their true identities behind protection 

services and pseudonyms. 

V. CONCLUSIONS 

This research assessed the impact of various disruption 

strategies on a child exploitation network by way of an 

automated internet web-crawler called LECEN. A particularity 

of the research is that it considered a network of website 

domains, but also created a network of the legal owners of these 

domains, in order to account for the possibility that multiple 

websites are run by the same individuals. This kind of overlap 

is especially troublesome in the context of planning 

interventions on website domains.  

It was found that bridge attacks favored disruption at the 

domain priority level, while hub attacks showed results which 

would favor disruption directly at the registrant level. This 

research thus offers a unique perspective upon disrupting online 

child exploitation networks with practical implications for law 

enforcement agencies tasked with combatting them.  

VI. ACKNOWLEDGEMENTS 

The authors of this paper would like to thank the Canadian 
Internet Registration Authority who, through their Community 
Investment Program, funded the extension of CENE into 
LECEN, and thus the research presented in this paper. The 
authors would further like to thank whoisxmlapi.com for 
graciously providing the Whois lookups for this research free of 
charge.  

VII. REFERENCES 

1)  Joffres, K., Bouchard, M., Frank, R., & Westlake, B. (2011). Strategies 
to disrupt online child pornography networks. Proceedings of the 11th 
ACM SIGKDD Workshop on Intelligence and Security Informatics. 

2)  Wortley, R., & Smallbone, S. Child Pornography on the internet. (2006). 
Washington, DC: Office Of the Community oriented Policing Services. 

3)  Jewkes, Y., & Andrews, C. (2007). Internet child pornography: 
International responses. In Y. Jewkes (Ed.), Crime Online (pp. 60-81). 
Portland, Ore: Willan Publishing. 

4)  Crimes against Children. (n.d.). Accessed August 3, 2014 from the 
INTERPOL website: http://www.interpol.int/Crime-areas/Crimes-
against-children/Crimes-against-children 

5)  Westlake, B., Bouchard, M., & Frank, R. (2011). Finding the Key Players 
in Online Child Exploitation Networks. Policy & Internet, 3(2), 104. 

6)  Westlake, B., Bouchard, M., Frank, R. (2012). Comparing methods for 
detecting child exploitation content online. Proceedings of the European 
Intelligence and Security Informatics 2012. 

7)  Frank, R., Westlake, B., & Bouchard, M. (2010). The structure and 
content of online child exploitation networks. Proceedings of the tenth 
ACM SIGKDD Workshop on Intelligence and Security Informatics '04. 

8) Internet Usage Statistics. (2014). Accessed March 16, 2015 from 
http://www.internetworldstats.com/stats.htm 

9) Broughton, D.D. (2009). Child exploitation in the 21st century. 

Paediatrics and Child Health, 19, S197-S201. doi: 
10.1016/j.paed.2009.08.006 

10) Cohen‐Almagor, R. (2013). Online Child Sex Offenders: Challenges and 

Counter‐Measures. The Howard Journal of Criminal Justice, 52(2), 190-
215. doi: 10.1111/hojo.12006 

11) Beech, A. R., Elliott, I. A., Birgden, A., & Findlater, D. (2008). The 

internet and child sexual offending: A criminological review. Aggression 
and Violent Behavior, 13(3), 216-228. doi:10.1016/j.avb.2008.03.007 

12) Engeler, E. (2009, September 16). UN expert: Child porn on internet 
increases. The Associated Press. Retrieved from: 

http://abcnews.go.com/Technology/wireStory?id=8591118. 

13) Microsoft Collaborates with Global Police to Develop Child Exploitation 

Tracking System for Law Enforcement Agencies. (2005, April 7). 
Accessed August 3, 2014 from the Child Exploitation and Online 

Protection website: https://www.microsoft.com/en-

us/news/press/2005/apr05/04-07cetspr.aspx  
14) Protecting our Children. (2011, October 3). Accessed August 3, 2014 

from the Federal Bureau of Investigation website: 

http://www.fbi.gov/news/stories/2011/october/cyber_100311/cyber_10
0311\ 

15) Shiels, M. (2008). Google tackles child pornography. Accessed August 

3, 2014 from the BBC website: http://news.bbc.co.uk/2/hi/7347476.stm 
16) Microsoft and NetClean provide PhotoDNA Technology to help law 

enforcement fight online child sexual exploitation. (2012, March 19). 

Accessed August 3, 2014 from the Netclean website: 
https://www.netclean.com/en/press/microsoft-and-netclean-provide-

photodna-technology-to-help-law-enforcement-fight-online-child-

sexual-exploitation/  
17) J. McLaughlin, “Cyber child sex offender typology”, 2004. Available at: 

http://www.ci.keen.nh.us/police/typology.html 

18) Monk, B., Allsup, R., Frank, R. “LECENing places to hide: Geo-
Mapping Child Exploitation Material”, Intelligence and Security 
Informatics Conference 2015, Phoenix, AZ. Forthcoming 

19) Wasserman, S. and Faust, K. Social Network Analysis: Methods and 
Applications . Cambridge University Press, Cambridge, 1994.  

20) R. Hanneman, and M. Riddle, Introduction to Social Network Methods. 
Riverside, CA: University of California, Riverside, 2005.  

21) V.E. Krebs, “Mapping networks of terrorist cells,” Connections, vol. 24, 
pp. 43-52, 2002 

22) S. Milgram, “The small world problem,” Psych. Tod., vol. 1, pp. 61-67, 
May 1967. 

23) Carrington, P., Scott, J. and Wasserman, S. (2005). Models and methods 
in Social Network Analysis. Cambridge University Press, Cambridge, 
2005. 

24) Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods 
and Applications. Cambridge University Press. 

25)  Westlake, B., Bouchard, M. (Forthcoming). Criminal Careers in 
Cyberspace: Examining Website Failure within Child Exploitation 
Networks. Justice Quarterly. 

26) Joffres, K., Bouchard, M. (2015). Vulnerabilities in online child 
pornography networks.pp. 153-175 In Aili Malm and Gisela Bichler 
(Eds), Using Network Analysis to Prevent Crime. Crime Prevention 
Studies, Monsey, NY: Criminal Justice Press. 

27) Tremblay, P. (2006). Convergence settings for nonpredatory 'Boy 
Lovers'. In R. Wortley & S. Smallbone (Eds.), Situational prevention of 
child sexual abuse (pp.145-168). Monsey, NY: Criminal Justice Press. 

28) Deepakumara, J., Heys, H. M., & Venkatesan, R. (2001). FPGA 
implementation of MD5 hash algorithm. In Electrical and Computer 
Engineering, 2001. Canadian Conference on (Vol. 2, pp. 919-924). IEEE. 

29) Minor, T. (2012). Attacking the Nodes of Terrorist Networks. Global 
Security Studies, 3(2), 1-12. 

30) Holme, P., Kim, B. J., Yoon, C. N., & Han, S. K. (2002). Attack 
vulnerability of complex networks. Physical Review E, 65(5), 056109. 

31) Xu, J., & Chen, H. (2008). The topology of dark networks. 
Communications of the ACM, 51(10), 58-65. 

32)  Everton, S. F. (2012). Disrupting dark networks (Vol. 34). Cambridge 
University Press. 

33)  Borgatti, S.P., Everett, M.G. and Freeman, L.C. 2002. Ucinet for 
Windows: Software for Social Network Analysis. Harvard, MA: 
Analytic Technologies. 

34)   Bouchard, M., Nash, R. (2015). Researching Terrorism and Counter-
Terrorism through a Network Lens. In M. Bouchard (Ed.). Social 
network, terrorism and counter-terrorism: Radical and connected. New 
York; Routledge. 

35)  Morselli, C. (2009). Inside criminal networks. New York: Springer. 

36) ICANN WHOIS. (2015). Notice, Disclaimers, and terms of use. 

Retrieved from http://whois.icann.org/en 

 

http://www.interpol.int/Crime-areas/Crimes-against-children/Crimes-against-children
http://www.interpol.int/Crime-areas/Crimes-against-children/Crimes-against-children
http://www.interpol.int/Crime-areas/Crimes-against-children/Crimes-against-children
http://www.fbi.gov/news/stories/2011/october/cyber_100311/cyber_100311/
http://www.fbi.gov/news/stories/2011/october/cyber_100311/cyber_100311/
http://news.bbc.co.uk/2/hi/7347476.stm
https://www.netclean.com/en/press/microsoft-and-netclean-provide-photodna-technology-to-help-law-enforcement-fight-online-child-sexual-exploitation/
https://www.netclean.com/en/press/microsoft-and-netclean-provide-photodna-technology-to-help-law-enforcement-fight-online-child-sexual-exploitation/
https://www.netclean.com/en/press/microsoft-and-netclean-provide-photodna-technology-to-help-law-enforcement-fight-online-child-sexual-exploitation/
http://www.ci.keen.nh.us/police/typology.html

